Week 4 - L07 Faster than GD: Accelerated Methods

CS 295 Optimization for Machine Learning Ioannis Panageas

Recap (GD)

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, convex (want to minimize) and L-smooth. Let $R = ||x_1 - x^*||_2$. It holds for $T = \frac{2R^2L}{\epsilon}$

$$f(x_{T+1}) - f(x^*) \le \epsilon,$$

with appropriately choosing $\alpha = \frac{1}{L}$.

Remarks

- Speed of convergence is independent of dimension *d*.
- This result gives a rate of $O\left(\frac{L}{\epsilon}\right)$.

Recap (GD) cont.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_1 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Remarks

- Speed of convergence is independent of dimension *d*.
- This result gives a rate of $O\left(\frac{L}{\mu}\log\frac{1}{\epsilon}\right)$. $\kappa \coloneqq \frac{L}{\mu}$ is called condition number.

Recap (GD) cont.

Theorem (Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be differentiable, μ -strongly convex (want to minimize) and L-smooth. Let $R = ||x_1 - x^*||_2$. It holds for $T = \frac{2L}{\mu} \ln \left(\frac{R}{\epsilon}\right)$ $||x_T - x^*||_2 \le \epsilon$,

with appropriately choosing $\alpha = \frac{1}{L}$.

Remarks

- Speed of convergence is independent of dimension *d*.
- This result gives a rate of $O\left(\frac{L}{\mu}\log\frac{1}{\epsilon}\right)$. $\kappa \coloneqq \frac{L}{\mu}$ is called condition number.

Can we do better?

Accelerated Gradient Descent (Nesterov)

Definition (Accelerated Gradient Descent). Let $f : \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. The Accelerated Gradient Descent is defined as follows:

- 1. Initialization $x_1, y_1 = x_1$, stepsize η .
- 2. For t=1 ... T do

3.
$$y_{t+1} = x_t - \eta \nabla f(x_t)$$

- 3. $y_{t+1} = x_t \eta \nabla f(x_t)$ 4. $x_{t+1} = (1 + \gamma_t)y_{t+1} \gamma_t y_t = y_{t+1} + \gamma_t (y_{t+1} y_t).$ 5. End For

Remarks

- Introduced by Nesterov in 1983. $y_{t+1} y_t$ is called momentum.
- γ_t is a sequence independent of x_t and $\gamma_t \ge 0$ for all t.

Theorem (Strongly convex case). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth and μ -strongly convex function. Assume that x^* is the minimizer and set $\gamma_t := \frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ and $\eta = \frac{1}{L}$. Then it holds that

$$f(y_{t+1}) - f(x^*) \le \frac{L+\mu}{2} ||x_1 - x^*||_2^2 e^{-\frac{t}{\sqrt{k}}},$$

hence we reach ϵ *-close in* ℓ_2 *after* $T := \sqrt{\frac{L}{\mu}} \log\left(\frac{R^2(L+\mu)}{\epsilon}\right)$ *iterations.*

Remarks

• This result gives a rate of $O\left(\sqrt{\frac{L}{\mu}\log\frac{1}{\epsilon}}\right)$.

Proof. We define the following sequence of functions:

•
$$\Phi_1(x) = f(x_1) + \frac{\mu}{2} ||x - x_1||_2^2$$

•
$$\Phi_{s+1}(x) = \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s(x) + \frac{1}{\sqrt{k}} \left(f(x_s) + \nabla f(x_s)^\top (x - x_s) + \frac{\mu}{2} \|x - x_s\|_2^2\right).$$

Proof. We define the following sequence of functions:

•
$$\Phi_1(x) = f(x_1) + \frac{\mu}{2} ||x - x_1||_2^2$$

•
$$\Phi_{s+1}(x) = \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s(x) + \frac{1}{\sqrt{k}} \left(f(x_s) + \nabla f(x_s)^\top (x - x_s) + \frac{\mu}{2} \|x - x_s\|_2^2\right).$$

Intuitively, $\Phi_s(x)$ is a finer approximation from below of f(x). Formally:

Claim (Approximation).

$$\Phi_{s+1} \le f(x) + \left(1 - \frac{1}{\sqrt{\kappa}}\right)^s (\Phi_1(x) - f(x)).$$

Proof of Claim.

$$\Phi_{t+1}(x) = \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} \left(f(x_t) + \nabla f(x_t)^\top (x - x_t) + \frac{\mu}{2} \|x - x_t\|_2^2\right)$$

Proof of Claim.

$$\Phi_{t+1}(x) = \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} \left(f(x_t) + \nabla f(x_t)^\top (x - x_t) + \frac{\mu}{2} \|x - x_t\|_2^2\right)$$

$$\leq \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} f(x) \text{ from strong convexity,}$$

Proof of Claim.

$$\begin{split} \Phi_{t+1}(x) &= \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} \left(f(x_t) + \nabla f(x_t)^\top (x - x_t) + \frac{\mu}{2} \|x - x_t\|_2^2\right) \\ &\leq \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} f(x) \text{ from strong convexity,} \\ &= f(x) + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \left(\Phi_t(x) - f(x)\right). \end{split}$$

Therefore
$$\Phi_{t+1}(x) - f(x) \le \left(1 - \frac{1}{\sqrt{\kappa}}\right) (\Phi_t(x) - f(x)).$$

Proof of Claim.

$$\begin{split} \Phi_{t+1}(x) &= \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} \left(f(x_t) + \nabla f(x_t)^\top (x - x_t) + \frac{\mu}{2} \|x - x_t\|_2^2\right) \\ &\leq \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_t(x) + \frac{1}{\sqrt{\kappa}} f(x) \text{ from strong convexity,} \\ &= f(x) + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \left(\Phi_t(x) - f(x)\right). \end{split}$$

Therefore $\Phi_{t+1}(x) - f(x) \le \left(1 - \frac{1}{\sqrt{\kappa}}\right) (\Phi_t(x) - f(x)).$ Telescopic product: $\Phi_{t+1}(x) - f(x) \le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (\Phi_1(x) - f(x)).$

Proof cont.

We also need to bound f from above. Formally we have:

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).

 $f(y_s) \leq \min_x \Phi_s(x).$

Assuming for now the claim is true we have:

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).

$$f(y_s) \leq \min_x \Phi_s(x).$$

Assuming for now the claim is true we have:

$$f(y_s) - f(x^*) \le \Phi_t(x^*) - f(x^*) \\ \le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (\Phi_1(x^*) - f(x^*))$$

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).

$$f(y_s) \leq \min_x \Phi_s(x).$$

Assuming for now the claim is true we have:

$$f(y_s) - f(x^*) \le \Phi_t(x^*) - f(x^*)$$

$$\le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (\Phi_1(x^*) - f(x^*))$$

$$\le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (f(x_1) - f(x^*) + \frac{\mu}{2} ||x_1 - x^*||_2^2)$$

Optimization for Machine Learning

Proof cont.

W Since
$$f(x_1) - f(x^*) \le \underbrace{\nabla f(x^*)^\top (x_1 - x^*)}_{=0} + \frac{L}{2} ||x_1 - x^*||_2^2$$
, we get
 $f(y_s) - f(x^*) \le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t \frac{L+\mu}{2} ||x_1 - x^*||_2^2$

Assuming for now the claim is true we have:

$$f(y_s) - f(x^*) \le \Phi_t(x^*) - f(x^*)$$

$$\le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (\Phi_1(x^*) - f(x^*))$$

$$\le \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t (f(x_1) - f(x^*) + \frac{\mu}{2} ||x_1 - x^*||_2^2)$$

Optimization for Machine Learning

Proof of second Claim. Let's use GD now and induction. For s = 1 we have $f(y_1) \leq \min_x \Phi_1(x)$ (why?)

Proof of second Claim. Let's use GD now and induction. For s = 1 we have $f(y_1) \leq \min_x \Phi_1(x)$ (why?). Set $\min_x \Phi_s(x) = \Phi_s^*$.

 $f(y_{s+1}) \le f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$ (descent lemma),

$$= \left(1 - \frac{1}{\sqrt{\kappa}}\right)f(y_s) + \left(1 - \frac{1}{\sqrt{\kappa}}\right)(f(x_s) - f(y_s)) + \frac{1}{\sqrt{\kappa}}f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

Proof of second Claim. Let's use GD now and induction. For s = 1 we have $f(y_1) \leq \min_x \Phi_1(x)$ (why?). Set $\min_x \Phi_s(x) = \Phi_s^*$.

 $f(y_{s+1}) \le f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$ (descent lemma),

$$= \left(1 - \frac{1}{\sqrt{\kappa}}\right)f(y_s) + \left(1 - \frac{1}{\sqrt{\kappa}}\right)\left(f(x_s) - f(y_s)\right) + \frac{1}{\sqrt{\kappa}}f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

induction

$$\widehat{\leq} \quad \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s^* + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \left(f(x_s) - f(y_s)\right) + \frac{1}{\sqrt{\kappa}} f(x_s) - \frac{1}{2L} \left\|\nabla f(x_s)\right\|_2^2$$

Proof of second Claim. Let's use GD now and induction. For s = 1 we have $f(y_1) \leq \min_x \Phi_1(x)$ (why?). Set $\min_x \Phi_s(x) = \Phi_s^*$.

 $f(y_{s+1}) \le f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$ (descent lemma),

$$= \left(1 - \frac{1}{\sqrt{\kappa}}\right)f(y_s) + \left(1 - \frac{1}{\sqrt{\kappa}}\right)\left(f(x_s) - f(y_s)\right) + \frac{1}{\sqrt{\kappa}}f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

induction

$$\overbrace{\leq} \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s^* + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \left(f(x_s) - f(y_s)\right) + \frac{1}{\sqrt{\kappa}} f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

convexity

$$\overbrace{\leq} \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s^* + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \nabla f(x_s)^\top (x_s - y_s) + \frac{1}{\sqrt{\kappa}} f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

Optimization for Machine Learning

Proof of second Claim. Let's use GD now and induction. For s = 1 we have $f(y_1) \leq \min_x \Phi_1(x)$ (why?). Set $\min_x \Phi_s(x) = \Phi_s^*$.

 $f(y_{s+1}) \le f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$ (descent lemma),

$$= \left(1 - \frac{1}{\sqrt{\kappa}}\right)f(y_s) + \left(1 - \frac{1}{\sqrt{\kappa}}\right)(f(x_s) - f(y_s)) + \frac{1}{\sqrt{\kappa}}f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

induction

$$\overbrace{\leq} \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s^* + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \left(f(x_s) - f(y_s)\right) + \frac{1}{\sqrt{\kappa}} f(x_s) - \frac{1}{2L} \left\|\nabla f(x_s)\right\|_2^2$$

convexity

$$\widehat{\leq} \quad \left(1 - \frac{1}{\sqrt{\kappa}}\right) \Phi_s^* + \left(1 - \frac{1}{\sqrt{\kappa}}\right) \nabla f(x_s)^\top (x_s - y_s) + \frac{1}{\sqrt{\kappa}} f(x_s) - \frac{1}{2L} \|\nabla f(x_s)\|_2^2$$

Optimization for Machine Learning

Proof of second Claim cont. Observe that $\nabla^2 \Phi_s(x) = \mu I_d$,

therefore $\Phi_s(x) = \Phi_s^* + \frac{\mu}{2} ||x - v_s||_2^2$ for some v_s .

Proof of second Claim cont. Observe that $\nabla^2 \Phi_s(x) = \mu I_d$,

therefore $\Phi_s(x) = \Phi_s^* + \frac{\mu}{2} ||x - v_s||_2^2$ for some v_s .

Since $\nabla \Phi_{s+1}(x) = \mu (1 - \frac{1}{\sqrt{\kappa}})(x - v_s) + \frac{1}{\sqrt{\kappa}} \nabla f(x_s) + (1 - \frac{1}{\sqrt{\kappa}})(x - x_s)$ and v_{s+1} is a minimizer of Φ_{s+1} (that is $\nabla \Phi_{s+1}(v_{s+1}) = 0$) we can find a relation for v_{s+1}, v_s .

Proof of second Claim cont. Observe that $\nabla^2 \Phi_s(x) = \mu I_d$,

therefore $\Phi_s(x) = \Phi_s^* + \frac{\mu}{2} ||x - v_s||_2^2$ for some v_s .

Since $\nabla \Phi_{s+1}(x) = \mu (1 - \frac{1}{\sqrt{\kappa}})(x - v_s) + \frac{1}{\sqrt{\kappa}} \nabla f(x_s) + (1 - \frac{1}{\sqrt{\kappa}})(x - x_s)$ and v_{s+1} is a minimizer of Φ_{s+1} (that is $\nabla \Phi_{s+1}(v_{s+1}) = 0$) we can find a relation for v_{s+1}, v_s .

We conclude that

$$v_{s+1} = (1 - \frac{1}{\sqrt{\kappa}})v_s + \frac{1}{\sqrt{\kappa}}x_s - \frac{1}{\mu\sqrt{\kappa}}\nabla f(x_s)$$

Proof of second Claim cont. Observe that $\nabla^2 \Phi_s(x) = \mu I_d$,

therefore $\Phi_s(x) = \Phi_s^* + \frac{\mu}{2} ||x - v_s||_2^2$ for some v_s .

Since $\nabla \Phi_{s+1}(x) = \mu (1 - \frac{1}{\sqrt{\kappa}})(x - v_s) + \frac{1}{\sqrt{\kappa}} \nabla f(x_s) + (1 - \frac{1}{\sqrt{\kappa}})(x - x_s)$ and v_{s+1} is a minimizer of Φ_{s+1} (that is $\nabla \Phi_{s+1}(v_{s+1}) = 0$) we can find a relation for v_{s+1}, v_s .

We conclude that

$$v_{s+1} = (1 - \frac{1}{\sqrt{\kappa}})v_s + \frac{1}{\sqrt{\kappa}}x_s - \frac{1}{\mu\sqrt{\kappa}}\nabla f(x_s)$$

Evaluating Φ_{s+1} at x_s we have

$$\Phi_{s+1}^* + \frac{\mu}{2} \|x_s - v_{s+1}\|_2^2 = (1 - \frac{1}{\sqrt{\kappa}})\Phi_s^* + \frac{\mu}{2}(1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\sqrt{\kappa}}f(x_s)$$

Optimization for Machine Learning

Proof of second Claim cont.

Evaluating Φ_{s+1} at x_s we have

$$\Phi_{s+1}^* + \frac{\mu}{2} \|x_s - v_{s+1}\|_2^2 = (1 - \frac{1}{\sqrt{\kappa}})\Phi_s^* + \frac{\mu}{2}(1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\sqrt{\kappa}}f(x_s)$$

Two last observations:

•
$$||x_s - v_{s+1}||_2^2$$
 is equal to

$$= (1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\mu^2 \kappa} \|\nabla f(x_s)\|_2^2 - \frac{2}{\mu \sqrt{\kappa}} \nabla f(x_s)^\top (v_s - x_s),$$

Proof of second Claim cont.

Evaluating Φ_{s+1} at x_s we have

$$\Phi_{s+1}^* + \frac{\mu}{2} \|x_s - v_{s+1}\|_2^2 = (1 - \frac{1}{\sqrt{\kappa}})\Phi_s^* + \frac{\mu}{2}(1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\sqrt{\kappa}}f(x_s)$$

Two last observations:

• $||x_s - v_{s+1}||_2^2$ is equal to

$$= (1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\mu^2 \kappa} \|\nabla f(x_s)\|_2^2 - \frac{2}{\mu\sqrt{\kappa}} \nabla f(x_s)^\top (v_s - x_s),$$

• Assume $v_s - x_s = \sqrt{\kappa}(x_s - y_s)$ then by induction

$$v_{s+1} - x_{s+1} = \left(1 - \frac{1}{\sqrt{\kappa}}\right)v_s + \frac{1}{\sqrt{\kappa}}x_s - \frac{1}{\mu\sqrt{\kappa}}\nabla f(x_s) - x_{s+1}$$
$$= \sqrt{\kappa}x_s - \left(\sqrt{\kappa} - 1\right)y_s - \frac{\sqrt{\kappa}}{L}\nabla f(x_s) - x_{s+1}$$

Optimization for Machine Learning

Proof of second Claim cont.

Evaluating Φ_{s+1} at x_s we have

$$\Phi_{s+1}^* + \frac{\mu}{2} \|x_s - v_{s+1}\|_2^2 = (1 - \frac{1}{\sqrt{\kappa}})\Phi_s^* + \frac{\mu}{2}(1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\sqrt{\kappa}}f(x_s)$$

Two last observations:

• $||x_s - v_{s+1}||_2^2$ is equal to

$$= (1 - \frac{1}{\sqrt{\kappa}}) \|x_s - v_s\|_2^2 + \frac{1}{\mu^2 \kappa} \|\nabla f(x_s)\|_2^2 - \frac{2}{\mu\sqrt{\kappa}} \nabla f(x_s)^\top (v_s - x_s),$$

• Assume $v_s - x_s = \sqrt{\kappa}(x_s - y_s)$ then by induction

$$\begin{aligned} v_{s+1} - x_{s+1} &= (1 - \frac{1}{\sqrt{\kappa}})v_s + \frac{1}{\sqrt{\kappa}}x_s - \frac{1}{\mu\sqrt{\kappa}}\nabla f(x_s) - x_{s+1} \\ &= \sqrt{\kappa}x_s - (\sqrt{\kappa} - 1)y_s - \frac{\sqrt{\kappa}}{L}\nabla f(x_s) - x_{s+1} \\ &= \sqrt{\kappa}y_{s+1} - (\sqrt{\kappa} - 1)y_s - x_{s+1} = \sqrt{\kappa}(x_{s+1} - y_{s+1}) \end{aligned}$$
Optimization for Machine Learning

Analysis for smooth convex functions

Theorem (L-smooth case). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth. Assume that x^* is the minimizer and set $\eta = \frac{1}{L}$, $\gamma_t := \frac{\lambda_t - 1}{\lambda_{t+1}}$ where $\lambda_0 = 0$

and $\lambda_t = \frac{1+\sqrt{1+4\lambda_{t-1}^2}}{2}$. Then it holds that

$$f(y_t) - f(x^*) \le \frac{2L \|x_1 - x^*\|_2^2}{t^2},$$

hence we reach ϵ *-close in value after* $T := \left(\sqrt{\frac{2LR^2}{\epsilon}}\right)$ *iterations.*

Remarks

- This result gives a rate of $O\left(\sqrt{\frac{L}{\epsilon}}\right)$.
- The proof follows similar arguments to the classic GD smooth case.

Analysis for smooth convex functions

Theorem (L-smooth case). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice differentiable function, L-smooth. Assume that x^* is the minimizer and set $\eta = \frac{1}{L}$, $\gamma_t := \frac{\lambda_t - 1}{\lambda_{t+1}}$ where $\lambda_0 = 0$

and $\lambda_t = \frac{1+\sqrt{1+4\lambda_{t-1}^2}}{2}$. Then it holds that

$$f(y_t) - f(x^*) \le \frac{2L \|x_1 - x^*\|_2^2}{t^2},$$

hence we reach ϵ *-close in value after* $T := \left(\sqrt{\frac{2LR^2}{\epsilon}}\right)$ *iterations.*

Remarks

- This result gives a rate of $O\left(\sqrt{\frac{L}{\epsilon}}\right)$.
- The proof follows similar arguments to the classic GD smooth case.

Remark, this is the best you can do provably!

Optimization for Machine Learning

Conclusion

- Introduction to Accelerated Methods.
 - L-smooth and strongly convex cases.
 - Better rates of convergence (tight)
- Next lecture we will talk about non-convex optimization.