Week 4 - LO7
Faster than GD: Accelerated
Methods

CS 295 Optimization for Machine Learning

loannis Panageas



Recap (GD)

Theorem (Gradient Descent). Let f : R? — IR be differentiable, convex
(want to minimize) and L-smooth. Let R = ||x1 — x*||,. It holds for T =

flxria) — f(x7) <€,

with appropriately choosing & = 1.

2R?2L
€

Remarks
e Speed of convergence is independent of dimension d.

* This result gives a rate of O (5)

€
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Recap (GD) cont.

Theorem (Gradient Descent). Let f : R? — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||x1 — x™||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Remarks
e Speed of convergence is independent of dimension d.

: : L, 1 L. .
* This result gives a rate of O (;logg). fe =" is called condition number.
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Recap (GD) cont.

Theorem (Gradient Descent). Let f : R — R be differentiable,
u-strongly convex (want to minimize) and L-smooth. Let R = ||x1 — x*||,.

It holds for T = % In (%)
lxr —x"l; <°e,

with appropriately choosing « = 1.

Remarks
e Speed of convergence is independent of dimension d.

: : L, 1 L. .
* This result gives a rate of O (; log;). K= Cis called condition number.

Can we do better?
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Accelerated Gradient Descent
(Nesterov)

Definition (Accelerated Gradient Descent). Let f : RY — R be a differentiable
function. The Accelerated Gradient Descent is defined as follows:

—

. Initialization z,, y; = x1, stepsize 7.
2. For t=1 ... T do
Yt+1 = Tt — NV f(24)

3
4. LTity1 = (1 + %)yt+1 — YtYt = Y41 T 'Yt(yt+1 - yt)-
5. End For

Remarks
* Introduced by Nesterov in 1983. y;,1 — y; is called momentum.
* ¥ is asequence independent of x; and y; = 0 for all ¢.
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Analysis for smooth, strongly convex
functions

Theorem (Strongly convex case). Let f : R" — IR be a twice differentiable func-
tion, L-smooth and u- strongly convex function. Assume that x* is the minimizer and

set 7yt : % — and n = 1. Then it holds that

« L+ T
Flyen) = F(x) < = F I — 27 [5e” 4,

hence we reach e-close in £y after T := \/7 log (M) iterations.

Remarks

* This result gives a rate of O (\/%log i)
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Analysis for smooth, strongly convex
functions

Proof. We define the following sequence of functions:

o dy(x) = f(x1)+ & |lx — x5

o Doi1(x) = (1—3=) Ps(x)+ F= (flxs) + VF(xs) T (x —x5) + 5 [lx — x5]13) -
VK Vk
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Analysis for smooth, strongly convex
functions

Proof. We define the following sequence of functions:

o dy(x) = f(x1)+ & |lx — x5

o Dopr(x) = (1 2) () + L (Flx) + V(o) T(x —x) + & [|x — xs]3) -
Intuitively, ®(x) is a finer approximation from below of f(x). Formally:

Claim (Approximation).

@ < £+ (1- %) (®1(x) — £(x)).
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Analysis for smooth, strongly convex
functions

Proof of Claim.

Bri1(x) = (1= ) @i(x) + 2 (F(x0) + V) T (x = x) + 5 [lx = xi]15)
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Analysis for smooth, strongly convex
functions

Proof of Claim.

Bri1(x) = (1= ) @i(x) + 2 (F(x0) + V) T (x = x) + 5 [lx = xi]15)

< (1 — i) Dy (x) + \/—f(x) from strong convexity,
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Analysis for smooth, strongly convex
functions

Proof of Claim.

Bri1(x) = (1= ) @i(x) + 2 (F(x0) + V) T (x = x) + 5 [lx = xi]15)
< (1 T) Di(x) + \/—f(x) from strong convexity,
= f(x)+ (1= &) (@1(x) — f(2)).

Therefore @1 (x) — f(x) < ( ) (®1(x) — f(x)).

§|
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Analysis for smooth, strongly convex
functions

Proof of Claim.

Therefore @1 (x) — f(x) < (1 - %) (®1(x) — f(x)).

Telescopic product: @, 1(x) — f(x) < (1 — ﬁ)t (P1(x) — f(x)).
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Analysis for smooth, strongly convex
functions

Proof cont.

We also need to bound f from above. Formally we have:
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Analysis for smooth, strongly convex
functions

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).
f(ys) < min®y(x).

Assuming for now the claim is true we have:

Optimization for Machine Learning



Analysis for smooth, strongly convex
functions

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).
f(ys) < min®y(x).

Assuming for now the claim is true we have:

F(ys) — F(x7) < i) — F(x°)
< (1- L) @) - fx))
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Analysis for smooth, strongly convex
functions

Proof cont.

We also need to bound f from above. Formally we have:

Claim (From above).

F(ys) < min(x).

Assuming for now the claim is true we have:

fys) = f(x7) < Pi(x™) — fx7)

%) (x*) = f(x*)
1- L) (Fla) — f*) + B — 2 B)
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Analysis for smooth, strongly convex
functions

Proof cont.

W Since f(x1) — f(x*) < Vf(x*) T (x1 — x%) +5 [|x1 — x*||3, we get
C =9
flys) — F*) < (1—Z2) B I — =3

Assuming for now the claim is true we have:

fys) = f(x7) < Pi(x™) — fx7)

%) (x*) = f(x*)
1- L) (Fla) — f*) + B — 2 B)
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Analysis for smooth, strongly convex
functions

Proof of second Claim. Let’s use GD now and induction. For s = 1 we have
Fy1) < min, @1 (2) (why?)
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Analysis for smooth, strongly convex
functions

Proof of second Claim. Let’s use GD now and induction. For s = 1 we have
f(y1) < min, ®1(x) (why?). Set min, ®s(x) = ;.

f(Ws+1) < fxs) — lL HVf(XS)H% (descent lemma),

2
= (1= ) £+ (1= ) (PG — o) + S f ) — 2 (901
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Analysis for smooth, strongly convex
functions

Proof of second Claim. Let’s use GD now and induction. For s = 1 we have
f(y1) < min, ®1(x) (why?). Set min, ®s(x) = ;.

f(Ws+1) < fxs) — lL HV}C(XS)HE (descent lemma),

2
= (1= ) £+ (1= ) (PG — o) + S f ) — 2 (901

induction

= (1= L) @i (1= L) () - Flue) + L) = & I9F(x0)13
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Analysis for smooth, strongly convex
functions

Proof of second Claim. Let’s use GD now and induction. For s = 1 we have
f(y1) < min, ®1(x) (why?). Set min, ®4(z) = PI.

f(Wss1) < flxs) — 2 va(xS)Hz (descent lemma),

= (1= L) fe) + (1= L) (o) = fys) + 2 f(x) = & VA3

induction

(- F) e (1- &) U~ fE) + ) — & 195
convexity

22 (1 _ ﬁ) d* + (1 - LK) V(xs) T (xs = ys) + o f(xs) = op IV £ (x)13
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Analysis for smooth, strongly convex
functions

Proof of second Claim. Let’s use GD now and induction. For s = 1 we have
f(y1) < min, ®1(x) (why?). Set min, ®s(x) = ;.

f(ys41) < f(xs) = 3¢ [V f(x5) |12 (descent lemma),

= (1= J5) F) + (1= J2) (FGe) = o)) + Jf(xs) = 3 IV (o) 2

induction

= (1) @+ (1- &) () — F) + L) = & IV 13

convexity

(1) e (1 L) V) T )+ fl) - 2 IV ()3
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Analysis for smooth, strongly convex
functions

Proof of second Claim cont. Observe that V2®,(z) = uly,

therefore @, (x) = ®F + & ||x — vs H% for some v;.
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Analysis for smooth, strongly convex
functions

Proof of second Claim cont. Observe that V2®,(z) = uly,

therefore @, (x) = ®F + & ||x — vs H% for some v;.

Since V&g, 1(x) = u(1 — ﬁ)(x —vs) + %Vf(xs) + (1 — %)(x — Xs) and

Us11 is a minimizer of ®, ¢ (that is Vd,.1(vs11) = 0) we can find a relation
for vg.q, vs.

Optimization for Machine Learning



Analysis for smooth, strongly convex
functions

Proof of second Claim cont. Observe that V2®,(z) = uly,

therefore @, (x) = ®F + & ||x — vs H% for some v;.

Since V&g, 1(x) = u(1 — ﬁ)(x —vs) + %Vf(xs) + (1 - %)(x — Xs) and

Us11 is a minimizer of ®, ¢ (that is Vd,.1(vs11) = 0) we can find a relation
for vg.q, vs.

We conclude that

Dep1 = (1 %) + % - ﬁvf(xs)
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Analysis for smooth, strongly convex
functions

Proof of second Claim cont. Observe that V2®,(z) = uly,

therefore @, (x) = ®F + & ||x — vs H% for some v;.

Since V&g, 1(x) = u(1 — ﬁ)(x —vs) + %Vf(xs) + (1 - %)(x — Xs) and

Us11 is a minimizer of ®, ¢ (that is Vd,.1(vs11) = 0) we can find a relation
for vg.q, vs.

We conclude that

Dep1 = (1 %) + % ﬁvf(xs)

xs_

Evaluating ®,, 1 at x; we have

1 ... 1
@1+ 5l —oenalld = (1 22090 + 50— ) I~ wullf + S=f ()

Optimization for Machine Learning



Analysis for smooth, strongly convex
functions

Proof of second Clatm cont.

Evaluating ®,, 1 at x; we have

1
—=) [[xs —

Loax L B

H
(I)s+1 + 5 ||x5 'Us+1||2 = (1— %

(xs)

1
2
vs||5 + ﬁf

Two last observations:

o |[xs —vsi1 ||§ is equal to

= (1 J0) llxs = vsllz + 5 IV F(xs) 13 = 327 VF(xs) T (05 — x5),
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Analysis for smooth, strongly convex

functions

Proof of second Clatm cont.

Evaluating ®,, 1 at x; we have

U 1 U 1 2 1
@1+ s vl = (1= —)@r + 50— ) I — sl + o f()
Two last observations:
o |[xs —vsi1 ||§ is equal to
2 2
= (1- _) |xs — os|5 + ﬁ |V £(xs)5 — ﬂ\Z/EVf(xS)T(vs — Xs),

e Assume vs — Xs = /k(xs — ys) then by induction
Us41 — Xsp1 = (1 — ﬁ)vs + %xs - ﬁvf(xs) — Xs+1

= VKxs — (VK = 1)ys — YEVF(xs) — %51
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Analysis for smooth, strongly convex

functions

Proof of second Clatm cont.

Evaluating ®,, 1 at x; we have

U 1 U 1 2 1
@1+ s vl = (1= —)@r + 50— ) I — sl + o f()
Two last observations:
o |[xs —vsi1 ||§ is equal to
2 2
= (1- _) |xs — os|5 + ﬁ |V £(xs)5 — ﬂ\Z/EVf(xS)T(vs — Xs),

e Assume vs — Xs = /k(xs — ys) then by induction
Us41 — Xsp1 = (1 — ﬁ)vs + %xs - ﬁvf(xs) — Xs+1

= VKxs — (VK = 1)ys — YEVF(xs) — %51

= VRYsr1 — (VK= Dys = Xor1 = VE(Xsr1 — Yss1)
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Analysis for smooth convex functions

Theorem (L-smooth case). Let f : R" — IR be a twice differentiable function, L-

smooth. Assume that x* is the minimizer and set 1 = 1 Vi = M= wohere Ag =0
L Aty

14, /1+4A2
and Ay = 5 L Then it holds that

2L ||x — x*[|3

Flyn) - fle) < =22

hence we reach e-close in value after T := (\/ %) iterations.
Remarks

. . L
* This result gives a rate of O ( E)'

* The proof follows similar arguments to the classic GD smooth case.
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Analysis for smooth convex functions

Theorem (L-smooth case). Let f : R" — R be a twice dzﬁ"erentlable function, L-
smooth. Assume that x* is the minimizer and set 11 = %, Vi = ﬁf where Ag = 0

14, /1+4A2
and Ay = > 1 Then it holds that

Fly) — ) < 2EIELT 'l

. 2 . .
hence we reach e-close in value after T := (\/ %) iterations.

Remarks

* This result gives a rate of O (\/%)

* The proof follows similar arguments to the classic GD smooth case.

Remark, this is the best you can do

provably!
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Conclusion

* Introduction to Accelerated Methods.
— L-smooth and strongly convex cases.
— Better rates of convergence (tight)

e Next lecture we will talk about non-convex
optimization.



